Stimuli-responsive switchable halide perovskites: Taking advantage of instability
نویسندگان
چکیده
Halide perovskites offer a unique blend of useful semiconductor properties with defect tolerance and facile solution processing, making them attractive for broad range optoelectronic applications. These materials can be prepared at relatively mild conditions yet attain remarkable device performances. Their low formation energy soft ionic nature make easy to synthesize but also susceptible changes degradation. Such dynamic behavior enables halide readily undergo reversible chemical structural transformations on exposure external stimuli such as light, temperature, electric field, environment. The performance, processability, reconfigurability perovskites, viewed together, potentially winning combination traits stimuli-responsive (SRMs) switchable applications that are driving efficiency, autonomy, digitization. This review introduces the reader both fundamental applied aspects emerging class SRMs based perovskites. We highlight significant progress in showcasing perovskite systems optical electrical practical applications, smart (photovoltaic) windows, memory devices, data storage, sensors. current challenges associated switching characteristics their future potential various technologies discussed. have recently shown important Here, we overview these well discuss summarize categorize by mechanisms. Furthermore, guide community’s search new designs outline several criteria effective materials. Finally, provide our perspective developments Since dawn civilization, has been source inspiration humanity’s technological feats: from irrigation architecture flight gene editing. Materials engineering drawn elements impart desirable functionalities artificial empower technologies, prime embodiment which (SRMs). Chameleon-inspired reversibly switch colors or other physical stimuli—e.g., pressure, electricity, environment—are valuable technologies,1Urban M.W. Stimuli-Responsive Materials. Royal Society Chemistry, 2016Google Scholar windows mirrors,2Wang Y. Runnerstrom E.L. Milliron D.J. Switchable windows.Annu. Rev. Chem. Biomol. Eng. 2016; 7: 283-304Crossref PubMed Scopus (206) Google anti-glare glasses,3Lampert C.M. Chromogenic materials.Mater. Today. 2004; 28-35Crossref (262) devices,4Heremans P. Gelinck G.H. Müller R. Baeg K.-J. Kim D.-Y. Noh Y.-Y. Polymer organic nonvolatile devices †.Chem. Mater. 2011; 23: 341-358Crossref (435) encryption,5Wang H. Ji X. Page Z.A. Sessler J.L. Fluorescent materials-based information storage.Mater. Front. 2020; 4: 1024-1039Crossref logic gates,6Erbas-Cakmak S. Kolemen Sedgwick A.C. Gunnlaugsson T. James T.D. Yoon J. Akkaya E.U. Molecular gates: past, present future.Chem. Soc. 2018; 47: 2228-2248Crossref sensors.7Hu L. Zhang Q. Li Serpe M.J. Stimuli-responsive polymers sensing actuation.Mater. Horiz. 2019; 6: 1774-1793Crossref Prussian Blue (1704) is probably oldest synthetic SRM; it undergoes discoloration reduction turns back its colored state when oxidized.3Lampert long-known pH indicators display color change response acidity level. More recent include molecular switches spiropyrans, diarylethenes, azobenzenes, stilbenes, helicenes photo-, thermo-, electro-switchable properties.8Irie M. Fukaminato Matsuda K. Kobatake Photochromism diarylethene molecules crystals: memories, switches, actuators.Chem. 2014; 114: 12174-12277Crossref (1357) Scholar, 9Moulin E. Faour Carmona-Vargas C.C. Giuseppone N. From machines materials.Adv. 32e1906036Crossref (29) 10Feringa B.L. Browne W.R. Switches. John Wiley & Sons, 2011Crossref diversity offers vast possibilities tailoring desired functionalities. there array crystalline materials—referred crystals—which solid state.11Sato O. Dynamic crystals properties.Nat. 8: 644-656Crossref (366) Yet, widespread often limited inferior charge transport characteristics, emission peaks, aggregation-caused quenching effects some specific cases. Hybrid organic-inorganic promising platform overcome limitations. Among them, makes uniquely suited SRMs. Specifically, semiconductors demonstrate long charge-carrier diffusion lengths (more than 1 μm),12Shi D. Adinolfi V. Comin Yuan Alarousu Buin A. Chen Hoogland Rothenberger Katsiev et al.Solar cells. Low trap-state density carrier organolead trihalide single crystals.Science. 2015; 347: 519-522Crossref (2826) Scholar,13Dong Fang Shao Mulligan Qiu Cao Huang Solar Electron-hole > 175 μm solution-grown CH3NH3PbI3 967-970Crossref (3114) tunable direct band gaps (1–3 eV),14Kovalenko M.V. Protesescu Bodnarchuk M.I. Properties lead nanocrystals.Science. 2017; 358: 745-750Crossref (870) large absorption coefficients (up 105 cm−1),15De Wolf Holovsky Moon S.J. Löper Niesen B. Ledinsky Haug F.J. Yum J.H. Ballif C. Organometallic perovskites: sharp edge relation photovoltaic performance.J. Phys. Lett. 5: 1035-1039Crossref (1466) narrow photoluminescence (PL) peaks,16Protesescu Yakunin Krieg F. Caputo Hendon C.H. Yang R.X. Walsh Kovalenko Nanocrystals cesium (CsPbX₃, X = Cl, Br, I): novel showing bright wide gamut.Nano 15: 3692-3696Crossref (3931) high PL quantum yields near-unity).17Dutta Behera R.K. Pal Baitalik Pradhan Near-unity efficiency all CsPbX3 (X=Cl, I) nanocrystals: generic synthesis approach.Angew. Int. Ed. Engl. 58: 5552-5556Crossref (49) energies18Moore D.T. Sai Tan K.W. Smilgies D.M. W. Snaith H.J. Wiesner U. Estroff L.A. Crystallization kinetics organic–inorganic role anion crystal growth.J. Am. 137: 2350-2358Crossref (227) 19Nagabhushana G.P. Shivaramaiah Navrotsky Direct calorimetric verification thermodynamic instability hybrid perovskites.Proc. Natl. Acad. Sci. USA. 113: 7717-7721Crossref (223) 20Brunetti Cavallo Ciccioli Gigli G. Latini On thermal (in)stability methylammonium perovskites.Sci. Rep. 31896Crossref (135) nature21Even Carignano Katan disorder translation/rotation coupling plastic phase perovskites.Nanoscale. 6222-6236Crossref Scholar,22Fabini D.H. Hogan Evans H.A. Stoumpos Kanatzidis M.G. Seshadri Dielectric signatures low-temperature glassy dynamics HC(NH2)2PbI3.J. 376-381Crossref (68) add additional degrees “switchability.” Herein, properties, first essential mechanisms including transformations. then an assessment outlooks development. One major advantages over traditional inorganic inexpensive synthesis. self-assemble into high-quality phases temperatures (below 150°C) deliver efficiencies devices.23Manser J.S. Saidaminov Christians J.A. Bakr O.M. Kamat P.V. Making breaking perovskites.Acc. Res. 49: 330-338Crossref (427) barriers Gibbs free energies crystallization but, downside, prone degradation pathways too.19Nagabhushana Scholar,20Brunetti intrinsic typically seen adverse effect deteriorates performance requires remediation. In contrast, this advantageous designing systems. To use, system should meet conditions. First, entail being exposed stimulus transform another stable (or metastable) state, not necessarily perovskite, displays distinct parent (Figures 1A–1C). absence stimulus, retain one states sufficiently periods. Second, between occur rates, preferably timescales order seconds minutes, if shorter. Third, excellent durability, maintaining thousands cycles without Below, detail three-dimensional (3D) two-dimensional (2D) environment (including humidity), field. particularly focus examples outlined criteria. highly sensitive due instability. Moisture causes archetypal MAPbI3 (where MA+ methylammonium, CH3NH3+) irreversibly decomposes PbI2 water. However, under controlled humidity conditions, reaction proceeds intermediate hydrates24Leguy A.M.A. Hu Campoy-Quiles Alonso Weber O.J. Azarhoosh van Schilfgaarde Weller M.T. Bein Nelson al.Reversible hydration films, crystals, solar cells.Chem. 27: 3397-3407Crossref (770) Scholar,25Haque M.A. Syed Akhtar F.H. Shevate Singh Peinemann K.V. Baran Wu Giant microstripes: reversibility mechanism.ACS Appl. Interfaces. 11: 29821-29829Crossref (22) Scholar:MAPbI3 + H2O ⇄ MAPbI3·H2O(Equation 1) 4 2 MA4PbI6·2H2O 3 PbI2(Equation 2) MAI MA4PbI6·2H2O(Equation 3) thin films spontaneously below 30°C relative (RH) ≥40% recover dehydration above 60°C (Figure 2A).26Halder Choudhury Ghosh Subbiah A.S. Sarkar S.K. Exploring thermochromic hydrated cells.J. 3180-3184Crossref (60) 27Zhang Tso C.Y. Iñigo Liu Miyazaki Chao C.Y.H. Yu K.M. Perovskite window: advanced transition temperature.Appl. Energy. 254: 113690Crossref (24) 28Huisman B.A.H. Palazon Bolink Zero-dimensional halides post-synthesis transformation perovskites.Inorg. 2021; 60: 5212-5216Crossref (0) times reactions vary RH respectively, few minutes.27Zhang Scholar,29Liu Du Y.W. Lee H.H. Cheng Feng S.-P. Organic (MAPbI3−xClx) window strong regulation ability, hysteresis width.Adv. Funct. 31: 2010426Crossref (1) A similar equilibrium completely instantaneous nearly 40 occurs MAPbBr3 dihydrate, MA4PbBr6·2H2O.30Sharma Phadnis Das T.K. Kumar Kavaipatti Chowdhury Yella Reversible dimensionality tuning humidity: visualization application 3111-3117Crossref (11) Noteworthy, hydrates non-perovskite discussed only structurally different properties.24Leguy This, will demonstrated forthcoming sections, windows. Some nitrogen-containing react For instance, bleach triethylamine (Et3N),31Kim S.-H. Kirakosyan Choi Detection volatile compounds (VOCs), aliphatic amines, using fluorescent nanoparticles.Dyes Pigm. 147: 1-5Crossref (15) ammonia (NH3),32Zhao Zhu Optical bleaching (CH3NH3)PbI3 through room-temperature induced ammonia.Chem. Commun. (Camb). 50: 1605-1607Crossref pyridine (C6H5N)33Jain S.M. Z. Häggman Mirmohades Johansson M.B. Edvinsson Boschloo Frustrated Lewis pair-mediated recrystallization improved quality voltage planar cells.Energy Environ. 9: 3770-3782Crossref vapors immediately vapor removed. ambient disadvantageous on-demand switching, unless sealed atmosphere gas recently.34Wheeler L.M. Moore Ihly Stanton N.J. Miller E.M. Tenent R.C. Blackburn Neale N.R. enabled photothermal complex dissociation iodide.Nat. 1722Crossref (48) Namely, film inert containing 2% methylamine (CH3NH2) gas.34Wheeler forms MAPbI3·xCH3NH2 (solid, x ≤ room temperature dissociates initial reactants heating >35°C. Importantly, two 20 less min. Interestingly, N,N-dimethylformamide (DMF)—being good solvent MAPbI3—also MAPbI3·DMF complex, 60°C.35Guo Shoyama Sato Matsuo Inoue Harano Tanaka Nakamura Chemical connecting lead(II) iodide via polymeric plumbate(II) fiber.J. 15907-15914Crossref (147) Scholar,36Hao Chang R.P.H. Controllable gas–solid interface hole conductor-free cells steady power conversion 10%.J. 136: 16411-16419Crossref (322) Meanwhile, non-polar dichloromethane (CH2Cl2) induce 2D (PEA)2SnBr4 PEA+ phenethylammonium, C6H5CH2CH2NH3+) 0D-networked [(PEA)6Br2]SnBr6·2CH2Cl2 presence excess PEABr 2B).37Xu L.-J. Lin Zhou Worku Chaaban He Plaviak al.0D 2D: cases phenylethylammonium tin bromide hybrids.Chem. 32: 4692-4698Crossref Ion exchange widely used approach post-synthetic modification Depending exchanged ion, may either preserve structure. MAPbX3 Cl−, Br−, I−) nanocrystals complete fully processes destruction structure 3A).38Nedelcu Grotevent Fast anion-exchange luminescent (CsPbX3, I).Nano 5635-5640Crossref (1261) 39Akkerman Q.A. D’Innocenzo Accornero Scarpellini Petrozza Prato Manna Tuning reactions.J. 10276-10281Crossref (1184) 40Jang Park Shojaei Kang H.S. Ahn J.P. J.W. Song J.K. organometal colloidal full-range gap tuning.Nano 5191-5199Crossref (301) 41Yoon Y.J. K.T. S.H. Shin Y.S. Walker S.Y. Heo Kwak al.Reversible, full-color luminescence post-treatment nanocrystals.Joule. 2: 2105-2116Abstract Full Text PDF cation reactions—such FAPbX3 FA+ formamidinium, CH(NH2)2+)—also structure.42Eperon G.E. Beck C.E. Cation interconversion.Mater. 3: 63-71Crossref Scholar,43Zhou Pang Padture N.P. Exceptional morphology-preserving evolution formamidinium triiodide organic-cation displacement.J. 138: 5535-5538Crossref (137) interconversion NH4PbI3—are accompanied connectivity octahedral network.44Huang Manser Sadhu Ptasinska observation NH4PbI3 polar gaseous molecules.J. 5068-5073Crossref (38) note any ion-exchange generally least (one per each direction) states, impracticable. As use stimuli, CsPbBr3 dots (QDs) embedded glass matrix proposed.45Huang Guo Xiao Xia Fan Dong 3D laser printing inside transparent medium.Nat. Photonics. 14: 82-88Crossref (84) precursor Cs, Pb, was successively treated high-power irradiation annealing QDs focal point. decompose CsBr PbBr2 low-power 10 properties. plays crucial protecting enable reliable even after months storing solvents. Later, laser-induced strategy CsPbCl3-xBrx 0 < well.46Huang Ouyang Three-dimensional laser-assisted patterning blue-emissive metal photoluminescence.ACS Nano. 3150-3158Crossref Although solid-state usually more preferred reasons, still dissolved state. ink mixture MABr, PbBr2, MAI, dispersed DMF/γ-butyrolactone shows pale yellow orange, further red black, gradually heated 25°C 120°C.47De Bastiani Dursun I. Sinatra Peng Buttner Mohammed O.F. Thermochromic inks applications.Chem. 29: 3367-3370Crossref (54) precipitation MAPbI2.7Br0.3, MAPbI2.4Br0.6, MAPbI1.8Br1.2 respectively. restored cooled down 25°C, up hours. Ruddlesden-Popper (RP) Dion-Jacobson (DJ) rich modifications preservation innate “perovskite” interlayers intercalate small guest molecules, (e.g., polymerization) irreversible manners.48Smith I.C. Smith M.D. Jaffe Karunadasa H.I. Between sheets: postsynthetic perovskites.Chem. 1868-1884Crossref (57) 1-chloronaphthalene 1,2-dichlorobenzene (C10H21NH3)2CdCl4 resulting in, (C10H21NH3)2CdCl4·C10H7Cl (C10H21NH3)2CdCl4·C6H4Cl2 increased interlayer distances.49Dolzhenko Y.I. Inabe Maruyama situ x-ray intercalation weak interaction perovskite-type layered (C9H19NH3)2PbI4 (C10H21NH3)2CdCl4.Bull. Jpn. 1986; 59: 563-567Crossref unstable medium, likely der Waals interactions host molecules. products achieved covalent bonding. example, (BEA)2PbBr4 BEA+ butyleneammonium, CH2=CHC2H4NH3+) reacts I2, forming (BEA-I2)2PbBr4, (ICH2ICHC2H4NH3)2PbBr4, half-life 72 h 3B).50Solis-Ibarra chemisorption nonporous-crystalline hybrids.Angew. 53: 1039-1042Crossref speculate sealing iodine could, fact, help stabilize intercalated longer periods, whereas release could realized heating. Formamidinium (FA+) continuum phases. allows design FAn+1PbnX3n+1 n 1, 2, 3, …∞, across compositions spanning FA2PbX4 (n α-FAPbX3 ∞) finally 1D δ-FAPbX3:51Rosales B.A. Mundt L.E. Allen T.G. Prince K.J. Wolden C.A. Rumbles Schelhas L.T. Wheeler multicolor chromism perovskites.Nat. 5234Crossref (6) Scholar(n FAn+2Pbn+1X3n+4 FAX(Equation 4) shifts toward higher-n exposing humidity) reverses blowing dry He. shuttling FAX domain adjacent reservoir. Over transitions minutes achieved. FAPbI3 CsPbI3 thermodynamically temperatures.52Masi Gualdrón-Reyes A.F. Mora-Seró Stabilization black CsPbI3.ACS Energy 1974-1985Crossref (13) At they δ-FAPbI3 δ-CsPbI3 facilitated moisture. kinetically stabilized periods strategies annealing,53Zhumekenov A.A. Haque Sarmah S.P. Murali Miao X.-H. Abdelhady A.L. al.Formamidinium unprecedented length.ACS 1: 32-37Crossref (434) strain engineering,54Steele Jin Dovgaliuk Berger R.F. Braeckevelt Martin Solano Lejaeghere Rogge S.M.J. al.Thermal unequilibrium strained films.Science. 365: 679-684Crossref (162) atmosphere,55Straus D.B. Cava R.J. Kinetically perovskite-phase CsPbI3.J. 141: 11435-11439Crossref doping,56Alanazi A.Q. Kubicki Prochowicz Alharbi E.A. Bouduban M.E.F. Jahanbakhshi Mladenović Milić J.V. Giordano Ren al.Atomic-level micros
منابع مشابه
Thermodynamic origin of instability in hybrid halide perovskites
Degradation of hybrid halide perovskites under the influence of environmental factors impairs future prospects of using these materials as absorbers in solar cells. First principle calculations can be used as a guideline in search of new materials, provided we can rely on their predictive capabilities. We show that the instability of perovskites can be captured using ab initio total energy calc...
متن کاملSwitchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites.
The Rashba effect is spin degeneracy lift originated from spin-orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lacking. Here, we propose organic-inorganic hybrid metal halide perovskites as 3D Rashba systems driv...
متن کاملAtomic Resolution Imaging of Halide Perovskites.
The radiation-sensitive nature of halide perovskites has hindered structural studies at the atomic scale. We overcome this obstacle by applying low dose-rate in-line holography, which combines aberration-corrected high-resolution transmission electron microscopy with exit-wave reconstruction. This technique successfully yields the genuine atomic structure of ultrathin two-dimensional CsPbBr3 ha...
متن کاملDirect calorimetric verification of thermodynamic instability of lead halide hybrid perovskites.
Hybrid perovskites, especially methylammonium lead iodide (MAPbI3), exhibit excellent solar power conversion efficiencies. However, their application is plagued by poor chemical and structural stability. Using direct calorimetric measurement of heats of formation, MAPbI3 is shown to be thermodynamically unstable with respect to decomposition to lead iodide and methylammonium iodide, even in the...
متن کاملCharge carrier mobility in hybrid halide perovskites
The charge transport properties of hybrid halide perovskites are investigated with a combination of density functional theory including van der Waals interaction and the Boltzmann theory for diffusive transport in the relaxation time approximation. We find the mobility of electrons to be in the range 5-10 cm(2)V(-1)s(-1) and that for holes within 1-5 cm(2)V(-1)s(-1), where the variations depend...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Joule
سال: 2021
ISSN: ['2542-4351', '2542-4785']
DOI: https://doi.org/10.1016/j.joule.2021.07.008